DEPARTMENT OF THE ARMY

EM 1110-1-4005

US Army Corps of Engineers Washington, DC 20314-1000

CEMP-RT

Manual

No. 1110-1-4005 15 September 1997

Engineering and Design IN-SITU AIR SPARGING

Table of Contents

	Subject	Paragraph	Page		
CHAPTER 1	INTRODUCTION				
	Purpose	1-1	1-1		
	References	1-2	1-1		
	Background	1-3	1-2		
	Scope	1-4	1-4		
	Organization	1-5	1-4		
	Resources	1-6	1-4		
CHAPTER 2	TECHNOLOGY DESCRIPTION AND UNDERLYING PHYSICAL PROCESS				
	Introduction	2-1	2-1		
	Overview of Air Sparging	2-2	2-1		
	Air Sparging Technology Options	2-3	2-3		
	Related Technologies	2-4	2-4		
	Summary of Physical Processes	2-5	2-6		
	Components of Injection Pressure	2-6	2-6		
	Groundwater Mixing	2-7	2-13		
	Associated Technical Issues	2-8	2-19		
	Technology Assessment: Effectiveness and Limitation	s 2-9	2-22		
	Technology Status	2-10	2-23		
	Conditions Amenable to IAS	2-11	2-23		
	Success Criteria	2-12	2-23		
	IAS Models	2-13	2-26		
CHAPTER 3	SITE CHARACTERIZATION AND FEASIBILITY EVALUATIONS				
	Introduction	3-1	3-1		
	Technology Screening Strategy	3-2	3-1		
	Pre-Design Data Collection Requirements	3-3	3-3		
	Feasibility Studies	3-4	3-26		

EM 1110-1-4005 15 Sep 97

	Subject	Paragraph	Page
CHAPTER 4	PILOT TESTS		
	Introduction	4-1	4-1
	Pilot Testing Strategy	4-2	4-1
	Pilot Testing Guidance	4-3	4-2
CHAPTER 5	DESIGN CONSIDERATIONS FOR AIR SPARGING SYSTEMS		
	Introduction	5-1	5-1
	Design Strategy	5-2	5-1
	Design Guidance - Subsurface	5-3	5-4
	Subsurface Construction	5-4	5-12
	Manifold and Instrumentation Design	5-5	5-17
	Air Delivery Equipment Design	5-6	5-23
	System Appurtenances	5-7	5-27
CHAPTER 6	OPERATIONS AND MAINTENANCE		
	Introduction	6-1	6-1
	Construction Oversight	6-2	6-1
	O&M Strategy	6-3	6-1
	O&M Guidance - Below Grade Components Operation and Maintenance Guidance -	6-4	6-2
	Precommissioning and Start-up	6-5	6-4
	IAS System Operation, Maintenance and Monitoring	6-6	6-5
CHAPTER 7	SYSTEM SHUTDOWN AND CONFIRMATION OF CLEANUP		
	Introduction	7-1	7-1
	Shutdown Strategy	7-2	7-1
	Shutdown Guidance	7-3	7-4
CHAPTER 8	OTHER ISSUES		
	Introduction	8-1	8-1
	Legal Regulatory Issues	8-2	8-1
	Patent Issues	8-3	8-2
	Safety	8-4	8-6

APPENDICES

APPENDIX A. REFERENCES

		Subject	Page
		LIST OF FIGURES	
Figure	1-1	Typical in situ air sparging (IAS) application	1-3
	2-1	Typical in-well aeration application	2-5
	2-2	Schematic of channel flow at the pore scale showing	
		interfaces between air and water	2-7
	2-3	Schematic drawing of airflow	2-8
	2-4	Mass transfer during IAS	2-14
	2-5	Effective air sparging requires high air saturation and finely dispersed air channels	2-15
	2-6	Schematic representation of the behavioral stages	
		occurring during continuous air sparging	2-16
	2-7	Schematic cross section representing progressive	
		mounding behavior at three times	2-17
	2-8	Changes in water table elevation vs. time for four	
		observation wells at various distances from the	
		sparge well	2-18
	2-9	IAS implementation decision tree	2-25
	3-1	Technology screening decision matrix	3-2
	3-2	Capillary pressure head vs. moisture content for two	
		adjacent soil horizons	3-9
	3-3	Cross section of IAS application illustrating air	
		channeling to a monitoring well	3-15
	4-1	Pilot testing process	4-3
	4-2	Pilot-scale piping and instrumentation diagram	4-5
	4-3	Interpretations of air-entry pressure from flow vs. pressure data	4-8
	4-4	Site plan showing air sparging injection well and monitoring wells used in the study	4-11
	4-5	Cross section through the air sparging well and	
		neutron probe pipes showing changes in air	
		saturation through time	4-12
	4-6	Moisture profiles obtained by neutron logging	4-13
	4-7	ERT electrode layout	4-15
	4-8	ERT image showing percent water saturation in the	
		saturated zone	4-16
	4-9	Tracer gas measurements and helium recovery test	4-17
	4-10	Schematic representation of the difference between the	
		air sparging region of influence in the saturated	
		zone and in the vadose zone	4-19
	5-1	Schematic drawing showing sparged air	5-3
	5-2	Reported in-situ air sparging radius of influence vs.	
		number of sites	5-7
	5-3	Typical IAS site plan	5-11
	5-4	IAS well/monitoring point construction details	5-13
	5-5	Typical horizontal IAS well design	5-16

	Subject		Page
	5-6	Typical IAS piping and SVE P&I diagram	5-18
	5-7	Typical air sparging well design and wellhead	F 01
		completion	5-21
	5-8	Typical IAS preliminary system diagram	5-22
	6-1	Improval of mass removal rates with pulsed sparging	6-14
	7-1	Closure data evaluation decision matrix	7-2
		LIST OF TABLES	
Table	2-1	Pressure/Pressure Head Conversions	2-10
	2-2	Representative Values of Air-Entry Pressure	2-12
	2-3	Conditions Amenable to IAS	2-24
	3-1	Physical Parameters for Soil	3-5
	3-2	Chemical Parameters for Groundwater	3-11
	3-3	Useful Physicochemical Properties of Contaminants	3-18
	3-4	Microbiological Tests and Typical Results	3-23
	3-5	Typical Degradation Test Matrix	3-25
	4-1	Pilot Test Monitoring Methods	4-7
	5-1	Design Parameters for IAS Systems	5-5
	5-2	Instrumentation and Control Logic for Example IAS	
		and SVE System	5-19
	5-3	Typical IAS Air Delivery Equipment	5-24
	6-1	Suggested Precommissioning Checklist	6-6
	6-2	IAS System Start-up Procedures	6-10
	6-3a	Example IAS System Operational Checklist Mechanical	
		System Measurements	6-16
	6-3b	Example IAS System Checklist General Inspections	6-17
	6-3c	Example IAS System Checklist Equipment Maintenance	6-18
	6-4	IAS System Operation Strategy and Troubleshooting Guide	6-20
	6-5	Typical IAS O&M Manual	6-21